Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 5 | |
Section | Energy Engineering, Materials and Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911801023 | |
Published online | 04 October 2019 |
Role of different plants on nitrogen and phosphorus removal at low temperature in lab-scale constructed wetlands
1
Chengdu Engineering Corporation Limited, Power China, 610041 Chengdu, China
2
Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, 610041 Chengdu, China
3
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China
* Corresponding author: 2015041@chidi.com.cn
In this study, plant growth and nitrogen and phosphorus removal efficiency in lab-scale CWs by five plants (H. vulgaris, N. peltatum, N. tetragona, N. pumilum, S. trifolia) in winter in Sichuan basin was evaluated. H. vulgaris and N. tetragona would well adapt to the winter wetland environment, and the relative growth at the end of the experiment was 89.83% and 66.85%, respectively. In winter, H. vulgaris kept growing with accumulated stems and leaves, while growth of N. tetragona was mainly caused by the growth of roots and stems underwater. In addition, during the winter, removal efficiencies were 66.29%, 57.47%, 54.78%, 55.47%, 41.66% of TN and 62.40%, 69.75%, 69.97%, 65.65%, 76.55% of TP for each planted CWs respectively. The results indicated that the removal of nitrogen and phosphorus from CWs was mainly achieved by substrate, while a small portion was attributed by plant. However, plants like H. vulgaris and N. tetragona, in the CWs in winter can play the role of landscaping. Thus, H. vulgaris could be considered as a suitable and effective nutrient removal plant for treatment of nitrogen and phosphorus water in winter wetlands in Sichuan basin.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.