Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 15006 | |
Number of page(s) | 8 | |
Section | Historical buildings | |
DOI | https://doi.org/10.1051/e3sconf/202017215006 | |
Published online | 30 June 2020 |
Hygrothermal performance of log walls in a building of 18th century and prediction of climate change impact on biological deterioration
1 Department of Civil Engineering and Energy Technology, Oslo Metropolitan University – OsloMet, St. Olavs plass 4, N-0130, Oslo, Norway
2 Laboratory of Building Construction & Building Physics (LBCP), Department of Civil Engineering, Faculty of Engineering, Aristotle University of Thessaloniki (A.U.Th.), Thessaloniki, Gr-54124, Greece
* Corresponding author: petrosch@oslomet.no
Several studies underline the dramatic changes that are expected to take place in nature and environment due to climate change. The latter is also expected to affect the built environment. Particular emphasis is currently given to the impact of climate change on historical structures. Within this context, it is important to use simple methods and novel tools in order to investigate specific case studies. In this study, the climate change impact on the hygrothermal performance of the log walls in a historic timber building is presented. The building under investigation is the Fadum storehouse, also known as ‘the coated house’, located in Tønsberg, Norway. The storehouse dates to the late 18th century. It has a particular design with the main features of stumps or piles up to which it stands and the ‘coating’ that covers its outer walls. The main damage of the construction is related to the biological degradation of the wood. The hygrothermal performance of the log walls, as well as the exterior and interior climate, have been monitored and the results have been used to validate a Heat, Air and Moisture transport (HAM) model. The validated HAM model is then used to examine the performance of the log walls for both current and potential future climate conditions. The transient hygrothermal boundary conditions serve as the input parameters to a biohygrothermal model that is used to investigate the biological deterioration of the building components. The findings reveal that currently there is no mould risk for the main body of the construction, which is in accordance with the visual inspection. The passive systems of the building are highly conducive to these results, since they protect it from driving rain and other sources of moisture and eliminate the potential impact of future climate change risk scenarios.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.