Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 19003 | |
Number of page(s) | 6 | |
Section | Architectural aspects | |
DOI | https://doi.org/10.1051/e3sconf/202017219003 | |
Published online | 30 June 2020 |
The Use of Solar Shading in a Nearly Zero-Energy Neighbourhood
Ghent University, Faculty of Engineering and Architecture, Research group Building Physics, 9000 Ghent, Belgium
* Corresponding author: silke.verbruggen@ugent.be
The use of solar shading can have an important influence on the internal heat gains, especially in zero-energy buildings. However, the research in literature is almost uniquely focused on offices, while information on the use of solar shading in residential dwellings is lacking. Therefore, the solar shading behaviour of occupants of a nearly zero-energy social housing neighbourhood in Belgium is analysed. Data are gathered by solar shading logging with a building monitoring system, logbooks and cross-sectional surveys. In general, the solar shades were not often adjusted, with many of the solar shades either always opened or always closed. Clear seasonal influences were observed; however, the temperature and solar irradiance did not reveal a significant relationship with the use of the solar shading. This relationship could be biased by the fact that some of the occupants use the solar shades not to prevent solar heat gains but to darken the room in the evening (blinds). Since the shades are not often adjusted and are thus in the same position for a long time, the use is independent of the prevailing weather conditions. The position of the solar shades seems to be more influenced by the personal preference of the occupant than by external factors. Additional simulations, carried out with Modelica, showed that when the full capacity of the solar shades is used, the overheating can be decreased up to 29% in south oriented rooms. The possible negative impact on the heating demands can be neglected. This shows the necessity to correctly model the solar shading behaviour in residential buildings, especially in nearly zero-energy buildings, for which the cooling demands are increasingly important.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.