Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 01041 | |
Number of page(s) | 8 | |
Section | Energy Engineering and Power System | |
DOI | https://doi.org/10.1051/e3sconf/202018501041 | |
Published online | 01 September 2020 |
Z-ADALINE based high-precision wide-frequency signal measurement algorithm for power electronic power grid
1 Jinling Institute of Technology, Nanjing, China
2 Southeast University, Nanjing, China
3 Nari Technology CO., Ltd, Nanjing China
4 State Key Laboratory of Smart Grid Protection and Control, Nanjing China
* Corresponding author’s e-mail: psg@seu.edu.cn
Intermittent wind power, photovoltaic and other renewable energies have been paralleled, which makes the phenomena of high-order harmonics and simple harmonics more and more serious in the power system, showing a wide-frequency trend. The existing measurement algorithms mainly aim at signals in midfrequency and low-frequency. Besides, they are lack of a uniform high-precision algorithm for widefrequency measurement. To solve this problem, we propose a high-precision algorithm based on Z-ADALINE. Firstly, Zoom FFT algorithm is used to analyze original sampled signals. This step enables the refinement of its frequency spectrum, and obtains accurate frequency measurement results. At this time, the number of frequencies can also be determined. Secondly, the result of Zoom FFT is used as the input of the adaptive linear neural network(ADALINE). ADALINE can estimate amplitude and phase with high precision. The simulation results show that the proposed algorithm can realize high-precision measurement of frequency, amplitude and phase of wide-frequency signal effectively. Among them, the frequency resolution can be up to 0.3 Hz. The amplitude error is within 1V. Phase error is less than 0.6°. The results may provide some significant references for practical wide-frequency signal measurement in power electronic power grid.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.