Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 6 | |
Section | Field Studies and Engineering Applications | |
DOI | https://doi.org/10.1051/e3sconf/202019501024 | |
Published online | 16 October 2020 |
Fully-coupled analysis for the behaviour of flexible retaining structures under seismic conditions
1 Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milano, Italy
2 Università degli Studi di Perugia, via Goffredo Duranti 06125, Perugia, Italy
* Corresponding author: nicola.pontani@polimi.it
The study concerns the analysis of the behaviour of two propped reinforced-concrete diaphragm walls in coarse sand under seismic conditions. Fully-coupled dynamic equilibrium and pore water flow under unsaturated conditions for the soil have been taken into account, in order to assess the effects that the development of excess pore water pressures can have on the performance of such structures when dynamic conditions occur. The von Wolffersdorff hypoplastic model and the van Genuchten soil-water retention model have been used to describe the mechanical and retention behaviour of the sand. The Finite Element predictions of the soil and retaining structure behaviour show a significant dependence of the seismic performance of the structure – evaluated in terms of permanent displacements and structural loads, in view of the modern performance-based design criteria – on the excess pore pressures developed in the soil during the seismic shaking, even when dynamic liquefaction does not occur.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.