Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 6 | |
Section | Field Studies and Engineering Applications | |
DOI | https://doi.org/10.1051/e3sconf/202019501025 | |
Published online | 16 October 2020 |
Simulating the drying behavior of rammed earth columns
1 Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LOCIE, 73000, Chambéry, France
2 School of Engineering, University of Glasgow, Glasgow G128LT, UK.
* Corresponding author, e-mail: parul.chauhan@univ-smb.fr
Rammed earth construction provides an efficient alternative construction material to limit energy consumption and CO2 emission. It possesses various characteristics of a sustainable material, but its mechanical capacity is sensitive to humidity variations. It is, therefore, important to better understand water transport within rammed earth when subjected to varying ambient conditions. In this context, the present work aims to analyze the hydraulic behavior of a reduced piece of rammed earth wall consisting of a column of size 14cm x 14cm x 30cm subjected to drying from the initial compaction water content in an indoor environment. The columns had transient non-uniform relative humidity, which was measured in-situ. Thermo-hydraulic coupled numerical modeling was developed using realistic atmospheric boundary conditions. The material and hydric parameters were chosen from an experimental study previously performed at the material scale. A parametric study was performed in order to evaluate the sensitivity of the modeling to both material parameters and boundary conditions. The results of the numerical simulations were highly sensitive to parameter values used for the water retention curve and the surface mass transfer coefficient, with a satisfactory matching of experimental results only achieved after adjusting initial estimates of relevant parameter values.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.