Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 6 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503001 | |
Published online | 16 October 2020 |
Tensile strength of a vegetated and partially saturated soil
1 Universitat Politècnica de Catalunya, CIMNE, Barcelona, Spain
2 AMAP, CIRAD, CNRS, INRA, IRD, Univ. Montpellier, Montpellier, France
3 GIC S.r.l., Cochabamba, Bolivia
* Corresponding author: alessandrofraccica@gmail.com
Vegetated soil’s shear strength has been usually assessed through direct shear tests and under triaxial compression stress paths while less is known about its behaviour under tensile stress. Tensile strength and shrinkage-induced cracking play a crucial role in the hydro-mechanical response of earth structures exposed to drying/wetting cycles. For this purpose, a new device for direct tensile tests has been designed and used to let plants grow in compacted soil samples. The equipment consists of two cylindrical moulds connected to each other by a soil bridge in which failure upon pulling is induced due to geometrical constraints. Different soil’s mechanical responses were observed depending on whether suction was low or high. Indeed, it was detected an increase of soil tensile strength and a more brittle behaviour as suction was increasing. However, at the same suction, vegetated soil’s response was more ductile than that of the corresponding bare soil. Results were analysed within a shear strength criterion for partially saturated soils. The analysis evidenced an increase in shear strength in the vegetated soil. A correlation was found between this increase and the roots’ mechanical and morphological features.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.