Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03029 | |
Number of page(s) | 6 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503029 | |
Published online | 16 October 2020 |
Modelling Unsaturated Soil Response Beyond Residual Suction State via Vapor-Pressure Controlled Triaxial Testing
1 Department of Civil Engineering, Polytech Clermont-Ferrand, Université Clermont Auvergne, Institut Pascal. F-63171 Aubière, France
2 Department of Civil Engineering, School of Engineering, University of Guam, Mangilao, Guam, 96923, Guam
3 Department of Civil Engineering, University of Texas at Arlington, Arlington, Texas, 76019, USA
4 Department of Civil Engineering, Texas A & M University, College Station, 77843, Texas, USA
* e-mail: patilu@triton.uog.edu
Most of the previous research has been focused on developing and validating constitutive models to predict response of unsaturated soils in low-medium suction range. However, there is a scarcity of efforts in developing soil models to simulate its mechanical response in high suction range, particularly above the residual suction. This article presents a new constitutive model introducing net stress and suction as two independent variables. Furthermore, non-associative flow rule incorporating modified stress-dilatancy relationship to take unsaturated state into account is introduced to improve the model results in low-medium to high suction range. The essential soil model parameters are calibrated using suction-controlled triaxial test results for predictions of compacted silty sand response at high values of total suction above residual suction. Preliminary simulations show that proposed model can reasonably simulate the post-peak strain softening response obtained from suction-controlled CTC tests above residual suction value with reasonable accuracy. Although, the proposed model captures initial compression followed by dilation volumetric response with reasonable accuracy, it needs some improvements to be able to capture volumetric response accurately over entire suction range.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.