Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03028 | |
Number of page(s) | 6 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503028 | |
Published online | 16 October 2020 |
A comparative assessment of chemical stabilisers including waste materials, for the treatment of swelling-shrinking soils
1 London South Bank University. 103 Borough Road, SE1 0AA London, UK
2 Hertfordshire County Council, County Hall, Pegs Lane, Hertford, SG13 8DE, UK
* e-mail: mavroum@lsbu.ac.uk
This paper assesses comparatively the performance of a number of innovative soil stabilisers for the treatment of a highly swelling-shrinking soil, against that of commercial calcium lime. The production of lime, a most common soil stabiliser, involves high energy consumption, carbon dioxide emissions and the depletion of natural raw materials. Alternatives are actively sought, in particular industrial wastes and by-product materials or lower energy demand cements e.g. reactive magnesia (MgO) cements. In this paper calcium lime, reactive magnesia, industrial wastes and mixes of these with lime are comparatively assessed, based on a number of conventional measures of the propensity of a soil to swell, i.e. plasticity characteristics and swelling characteristics (swelling strains, swelling pressures, swelling indices). Furthermore, as expansive soils are typically in an unsaturated state hence sensitive to both changes in water content and suction, filter paper testing was performed to provide additional evidence of the effect of the treatments on the swelling/shrinking soil. According to the main findings, for the treatment of swelling shrinking soils, binders coming from the paper recycling industry show most promise as alternatives to lime; reactive magnesia cement had a smaller effect than calcium based stabilisers in improving the swelling-shrinking of the soil, yet it also suppressed swelling and shrinkage considerably; it thus shows potential for use as an alternative to common soil stabilisers (Portland cement and calcium lime) to alleviate the environmental impact of the latter.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.