Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 10 | |
Section | Sustainable Mobility | |
DOI | https://doi.org/10.1051/e3sconf/202019705006 | |
Published online | 22 October 2020 |
Passenger Car Energy Demand Assessment: a New Approach Based on Road Traffic Data
University of Messina, Engineering Department, 98166, C.da Di Dio, Messina, Italy
* Umberto Previti: upreviti@unime.it
† Sebastian Brusca: sbrusca@unime.it
‡ Antonio Galvagno: agalvagno@unime.it
Nowadays the automotive market is oriented to the production of hybrid or electric propulsion vehicle equipped with Energy Management System that aims to minimize the consumption of fossil fuel. The EMS, generally, performs a local and not global optimization of energy management due to the impossibility of predicting the user’s energy demand and driving conditions. The aim of this research is to define a driving cycle (speed time) knowing only the starting and the arrival point defined by the driver, considering satellite data and previous experiences. To achieve this goal, the data relating to the energy expenditure of a car (e.g. speed, acceleration, road inclination) will be acquired, using on-board acquisition system, during road sections in the city of Messina. At the same time, the traffic level counterplot and others information provided, for these specific sections, from GPS acquisition software will be collected. On-board and GPS data will be compared and, after considering an adequate number of acquisitions, each value of the traffic level will be associated with a driving cycle obtained by processing the acquired data. After that, the numerical model of a car will be created which will be used to compare the energy demand of two driving cycles. The first one acquired on a section with a random starting and destination point inside the historic city centre of Messina. The second is the one assigned, for that same section, considering only the value of the traffic level counterplot.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.