Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 12 | |
Section | Hydraulics and Pneumatics | |
DOI | https://doi.org/10.1051/e3sconf/202019707006 | |
Published online | 22 October 2020 |
On the Design of a Diaphragm Valve for Aerostatic Bearings
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
* Corresponding author: luigi.lentini@polito.it
Because of their almost zero friction, cleanness and long life, aerostatic bearings are commonly used in many applications where high precision of positioning is required, e.g. machine tools, measuring machines, semiconductor manufacturing and power board testing. However, air bearings suffer from low relative stiffness and poor damping. Active and passive compensation are two effective methods to enhance the static and dynamic performance of these kinds of bearings. Despite their higher performance, active compensation solutions are too expensive to be used in industrial applications, as a consequence of the costs related to their controllers, actuators and sensors. This paper presents the design and performance of a passive compensation method that exploits a diaphragm valve. Thanks to its ease of integration, satisfactory performance and relatively low cost, this method could be a valuable solution to increasing the stiffness of aerostatic bearings. This work provides a procedure to design diaphragm valves depending on the type of the integrated pad and the desired nominal air gap height. Results demonstrate that, once correctly designed, the diaphragm valve makes it possible to obtain bearings with quasi-static infinite stiffness at the selected air gap height.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.