Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 11 | |
Section | Heat Transfer and Fluid Dynamics | |
DOI | https://doi.org/10.1051/e3sconf/202019710002 | |
Published online | 22 October 2020 |
CFD analysis of the combustion in the BERL burner fueled with a hydrogen-natural gas mixture
Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari (IT)
* e-mail: tommaso.capurso@poliba.it
The regulatory restrictions, currently acting, impose a significant reduction of the Greenhouse Gas (GHG) emissions. After the coal-to-gas transition of the last decades, the fossil fuel-to-renewables switching is the current perspective. However, the variability of energy production related to Renewable Energy Sources requires the fundamental contribution of thermal power plants in order to guaranty the grid stability. Moving toward a low-carbon society, the industry is looking at a reduction of high carbon content fuels, pointing to Natural Gas (NG) and more recently to hydrogen-NG mixtures. In this scenario, a preliminary study of the BERL swirled stabilized burner is carried out in order to understand the impact of blending natural gas with hydrogen on the flame morphology and CO emissions. Preliminary 3D CFD simulations have been run with the purpose to assess the best combination of combustion model (Non Premixed and Partially Premixed Falmelets), turbulence model (Realizable k ɛ and the Reynolds Stress equation model) and chemical kinetic mechanism (GriMech3.0, GriMech 1.2 and Frassoldati). The numerical results of the BERL burner fueled with natural gas have been compared with experimental data in terms of flow patterns, radial temperature profiles, O2, CO and CO2 concentrations. Finally, a 30% hydrogen in natural gas mixture has been considered, keeping fixed the thermal power output of the burner and the global equivalence ratio.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.