Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 6 | |
Section | Minisymposium: Engineered Geomaterials for Energy and Environmental Sustainability (organized by Alessandro Rotta Loria) | |
DOI | https://doi.org/10.1051/e3sconf/202020509005 | |
Published online | 18 November 2020 |
Identifying thermo-mechanical induced microstructural changes
The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
* Corresponding author: saziz@vt.edu
Robust engineering of geomaterials for energy applications requires a clear understanding of the impacts of temperatures and pressures applied to the soil on their microstructures. Such understandings will facilitate better designs of new geomaterials and technologies via ensuring accurate assessments of the performance of the existing ones. In this study, we assess the changes in the microstructure—specific surface area and pore size distribution—of a saturated clay subjected to stress and temperature cycle. Clay specimens were subjected to the desired mechanical stresses and thermal cycles in a triaxial system. Then, the specimens were swiftly extracted from the triaxial, flush frozen in liquid nitrogen, then freeze-dried to preserve their microstructure. The preserved specimens were then used for specific surface area and pore size distribution assessments using nitrogen (N2)-gas adsorption and mercury intrusion porosimetry. The results established qualitative explanations of the expected microstructural changes in geomaterials under operational conditions, which facilitate the development of new geomaterials that can overcome such alternations.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.