Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 09005
Number of page(s) 6
Section Minisymposium: Engineered Geomaterials for Energy and Environmental Sustainability (organized by Alessandro Rotta Loria)
Published online 18 November 2020
  1. J. Cohen, K. Rautiainen, J. Ikonen, J. Lemmetyinen, T. Smolander, J. Vehviläinen, and J. Pulliainen, “Detection of Soil Frost in the Boreal Forest Region with Sentinel-1”, in EGU General Assembly Conference Abstracts of Conference, (2018). [Google Scholar]
  2. Z.-L. Zhang and Z.-D. Cui (2018), “Effects of freezing-thawing and cyclic loading on pore size distribution of silty clay by mercury intrusion porosimetry”, Cold. Reg. Sci. Technol., 145, 185-196. [Google Scholar]
  3. Z. Yuanlin and D. Carbee (1984), “Creep behavior of frozen silt under constant uniaxial stress”, J. Glaciol. and Geocry., 6(1), 33-48. [Google Scholar]
  4. E. Simonsen and U. Isacsson (1999), “Thaw weakening of pavement structures in cold regions”, Cold. Reg. Sci. Technol., 29(2), 135-151. [Google Scholar]
  5. N.T. Morgenstern and J. Nixon (1971), “One-dimensional consolidation of thawing soils”, Can. Geotech. J., 8(4), 558-565. [CrossRef] [Google Scholar]
  6. S.L. Abdelaziz and T.Y. Ozudogru (2016), “Selection of the design temperature change for energy piles”, Appl. Therm. Eng., 107, 1036-1045. [Google Scholar]
  7. S.L. Abdelaziz, T.Y. Ozudogru, C.G. Olgun, and J.R. Martin II (2014), “Multilayer finite line source model for vertical heat exchangers”, Geothermics, 51, 406-416. [Google Scholar]
  8. C.G. Olgun, S.L. Abdelaziz, and J.R. Martin, (2012), “Long-Term Performance and Sustainable Operation of Energy Piles”, in Proc. International Conference on Sustainable Design, Engineering, and Construction p. 534-542. [Google Scholar]
  9. C.G. Olgun, T.Y. Ozudogru, S.L. Abdelaziz, and A. Senol (2014), “Long-term performance of heat exchanger piles”, Acta Geotechnic., 10(5), 553-569. [CrossRef] [Google Scholar]
  10. H. Brandl, “Energy piles for heating and cooling of buildings”, in Seventh International Conference & Exhibition on Pilling and Deep Foundations. of Conference, (1998). [Google Scholar]
  11. H. Abuel-Naga, D. Bergado, A. Bouazza, and G. Ramana (2007), “Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling”, Can. Geotech. J., 44(8), 942-956. [Google Scholar]
  12. S.M. Zeinali and S.L. Abdelaziz, (2020), “Effect of Heating Rate on Thermally Induced Pore Water Pressures and Volume Change of Saturated Soils”, in Geo-Congress 2020. p. 31-39. [CrossRef] [Google Scholar]
  13. K. Jaradat and S. Abdelaziz, (2018), “Temperature-dependent load-displacemet curves of heat exchanger piles in sand”, in IFCEE 2018. 2018. p. 686-695. [CrossRef] [Google Scholar]
  14. Z. Darbari, K.A. Jaradat, and S.L. Abdelaziz (2017), “Heating–freezing effects on the pore size distribution of a kaolinite clay”, Environ. Earth Sci.s, 76(20), 713. [CrossRef] [Google Scholar]
  15. S.L. Abdelaziz, K.A. Jaradat, and S.M. Zeinali (2020), “Modified Thermomechanical Triaxial Cell for Microscopic Assessment of Clay Fabric Using Synchrotron X-Ray Diffraction”, Geotech. Test. J., 43(4). [Google Scholar]
  16. K.A. Jaradat, Z. Darbari, M. Elbakhshwan, S.L. Abdelaziz, S.K. Gill, E. Dooryhee, and L.E. Ecker (2017), “Heating-freezing effects on the orientation of kaolin clay particles”, Appl. Clay Sci., 150, 163-174. [Google Scholar]
  17. S.M. Zeinali and S.L. Abdelaziz, (2020), “Freezing-Thawing Effect on Saturated Clay Microstructure”, in Geo-Congress 2020. p. 40-48. [CrossRef] [Google Scholar]
  18. E. Chamberlain, I. Iskandar, and S. Hunsicker (1990), “Effect of freeze-thaw cycles on the permeability and macrostructure of soils”, Cold Region Research and Engineering Laboratory, 90(1), 145-155. [Google Scholar]
  19. C.H. Benson and M.A. Othman (1993), “Hydraulic conductivity of compacted clay frozen and thawed in situ”, J. of Geotech. Eng., 119(2), 276-294. [CrossRef] [Google Scholar]
  20. R.D. Hewitt and D.E. Daniel (1997), “Hydraulic conductivity of geosynthetic clay liners after freeze-thaw”, J. Geotech. and Geoenviron., 123(4), 305-313. [CrossRef] [Google Scholar]
  21. Jaradat, K. A., & Abdelaziz, S. L. (2020). Thermomechanical Triaxial Cell for Rate-Controlled Heating-Cooling Cycles. Geotech. Test. J., 43(4). [Google Scholar]
  22. C.J.R. Coccia and J.S. McCartney (2016), “Thermal volume change of poorly draining soils I: Critical assessment of volume change mechanisms”, Comput. and Geotech. 80, 26-40. [CrossRef] [Google Scholar]
  23. K.A. Jaradat and S.L. Abdelaziz, (2020), “Microscopic Assessment of the Thermally Induced Volume Changes of Saturated Clays Using Discrete Element Method”, in Geo-Congress 2020. p. 293-301. [CrossRef] [Google Scholar]
  24. R.G. Campanella and J.K. Mitchell (1968), “Influence of temperature variations on soil behavior”, J. Soil Mech. Found. Div., Am. Soc. Civ. Eng. , 94, 709-734. [Google Scholar]
  25. T. Hueckel and G. Baldi (1990), “Thermoplasticity of saturated clays: experimental constitutive study”, J. Geotech. Eng., 116(12), 1778-1796. [Google Scholar]
  26. J.K. Mitchell and K. Soga, (2005), “Fundamentals of soil behavior”. Vol. 3: John Wiley & Sons New York. [Google Scholar]
  27. ASTM D7928-17 (2017), Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis”: ASTM International, West Conshohocken, PA, [Google Scholar]
  28. S. Brunauer, P.H. Emmett, and E. Teller (1938), “Adsorption of gases in multimolecular layers”, J. Am. Chem. Soc., 60(2), 309-319. [Google Scholar]
  29. S. Sasanian and T. Newson (2013), “Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents”, Eng. Geol., 158, 15-22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.