Issue |
E3S Web Conf.
Volume 212, 2020
2020 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2020)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 15 | |
Section | Construction | |
DOI | https://doi.org/10.1051/e3sconf/202021202014 | |
Published online | 26 November 2020 |
Physical parameters of insulation with a structure-forming material from flax noils
Polotsk State University, 211440, Blokhina 29, Novopolotsk, Belarus
* Corresponding author: s.romanovskiy@psu.by
The results of studies to evaluate the effective operation of the obtained thermal insulation slabs made of flax fibers or noils were carried out. The sorption moisture content of insulants based on flax fibers or noils with modified liquid glass was determined at a relative humidity of 40–97%. The influence of humidity on the thermal conductivity of the test materials was studied. The coefficient of vapor permeability of insulation made of flax fibers or noils was established. The results of field tests of experimental thermal insulation materials on the attic flooring of a residential building during the cold season were considered. The graphs of the temperature distribution over the structure of the attic flooring and heat flow indicators were obtained. The values of the heat transfer resistance of the attic flooring were calculated at an air temperature of -20 °C to -2 °C. The moisture content of insulation at the end of the cold period was determined and the dependence of the distribution of moisture over the thickness of the thermal insulation layer was plotted. The results of the tests carried out indicate the highest efficiency of thermal insulation slabs made of flax fiber noils in comparison with insulants based on flax fibers.
Key words: flax fiber / flax noils / physical parameters
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.