Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 01049 | |
Number of page(s) | 6 | |
Section | NESEE2020-New Energy Science and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123301049 | |
Published online | 27 January 2021 |
Analysis of Fouling Characteristics of Diatomite Ceramic Membrane Using Filtration Models
1 School of Architectural Engineering, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
2 Key Laboratory of Urban and Rural Water Safety and Water Saving and Emission Reduction in Colleges and Universities of Yunnan Province, Kunming, 650201, Yunnan, China
a Corresponding author: qy0323@ynau.edu.cn
Ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to its advantageous properties over conventional polymeric membrane. The ceramic membrane processes are a rapidly emerging technology for water treatment, yet virtually no information on the performance and fouling mechanisms diatomite ceramic membrane. In this study, filtration experiments were carried out using a mixture of humic acid and kaolin which simulated surface water under constant pressure to reveal fouling characteristics of the filtration of the diatomite ceramic membrane. The results showed that the removal rate of VU254 was 52%~70%, and turbidity was 90%~95% when treat mixed water of 5-10mg/L kaolin and humic acid. And membrane surface retention and membrane pore adsorption were the mainly removal routes. And the flux slowly decreases, rapidly decreases, gradually decreases and stabilizes were three processes of diatomite ceramic membrane fouling. And the first and third stages of membrane fouling mainly caused by complete blocking, and the second stage was mainly controlled by standard blocking. The study found that humic acid would cause both the pore blocking and the fouling of the membrane surface when turbidity was present, especially the membrane surface pollution, it was the major factor of diatomite ceramic membrane fouling.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.