Issue |
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 9 | |
Section | Renewable Energies | |
DOI | https://doi.org/10.1051/e3sconf/202123801013 | |
Published online | 16 February 2021 |
Development of an experimental test rig for the pyrolysis of plastic residues and waste tires
1
Department of Sciences and Methods for Engineering – University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
2
Department of Chemistry University of Milan, Via Golgi, 19, 20133 Milan, Italy
* Corresponding author: luca.montorsi@unimore.it
The paper presents the design of the experimental apparatus developed in order to analyse the performance of a prototype of a pyrolysis system for the exploitation of the plastic residues of industrial processes and the end of life tires. The small scale pilot prototype is specifically designed for carrying out an experimental campaign aimed at determining the influence of different plastic types on the yield and on the quality of the liquid oil, gas and char obtained in the pyrolysis process. The study investigates the effect of different mixture of various plastic products mainly made of polyethylene, styrene butadiene rubber, nylon and natural rubber. The prototype is equipped with a control system able to monitor the main operating parameters of the process, such as the pyrogas pressure and temperature as well as the temperature inside the reactor where the pyrolysis takes place. The monitored variables are employed for deriving correlations among the operating conditions and the yield of the pyrolysis process. Therefore, further analysis concerns experimental measurements in order to estimate the main compounds that are contained in the syngas in comparison to the different plastic wastes analysed. Finally, the emissions of the small-scale prototype are evaluated.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.