Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 01013
Number of page(s) 9
Section Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202123801013
Published online 16 February 2021
  1. Mercati, S., Milani, M., Montorsi, L., & Paltrinieri, F. (2013). Optimization of the working cycle for a hydrogen production and power generation plant based on aluminum combustion with water. International journal of hydrogen energy, 38(18), 7209-7217. [Google Scholar]
  2. Montorsi, L., Milani, M., and Venturelli, M., “Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach.” Energy 158 (2018): 105-110. [Google Scholar]
  3. Yoshida H, Christensen TH, Scheutz C. Life cycle assessment of sewage sludge management: a review. Waste Manag Res 2013;31(11):1083-101. [PubMed] [Google Scholar]
  4. Li H, Larsson E, Thorin E, Dahlquist E, Yu X. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane. Energy Convers Manag 2015; 100:212-9. [Google Scholar]
  5. Milani, M., Montorsi, L., & Stefani, M. (2014). An integrated approach to energy recovery from biomass and waste: Anaerobic digestion– gasification–water treatment. Waste management & research, 32(7), 614-625. [Google Scholar]
  6. The new plastic economy “Rethinking the future of plastics” Ellen Mcarthur Foundation 2016 [Google Scholar]
  7. Singh N., Hui D., Singh R., Ahuja I.P.S., Feo L., Fraternali F., Recycling of plastic solid waste: A state of art review and future applications, Composites Part B 115, pp. 409-422 (2017) [Google Scholar]
  8. Al-Salem S.M., Lettieri P., Baeyens J., Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Management 29, pp. 2625-2643 (2009) [Google Scholar]
  9. Ragaert K., Delva L., Van Geem K., Mechanical and chemical recycling of solid plastic waste, Waste Management 69, pp. 24-58 (2017) [Google Scholar]
  10. Angyal A., Miskolczi N., Bartha L., Petrochemical feedstock by thermal cracking of plastic waste, Journal of Analytical and Applied Pyrolysis 79, pp. 409-414 (2007) [Google Scholar]
  11. Baeyens J., Brems A., Dewil R., Recovery and recycling of post-consumer waste materials. Part 2. Target wastes (glass beverage bottles, plastics, scrap metal and steel cans, end-of-life tyres, batteries and household hazardous waste), International Journal of Sustainable Engineering 3, pp. 232-245 (2009) [Google Scholar]
  12. Jouhara H., Ahmad D., Van den Boogaert I., Katsou E., Simons S., Spencer N., Pyrolysis of domestic based feedstock at temperatures up to 300 °C, Thermal Science and Engineering Progress 5, pp. 117-143 (2018) [Google Scholar]
  13. Anuar Sharuddin S.D., Faisal A., Wan Daud W.M.A., Aroua M.K., A review on pyrolysis of plastic wastes, Energy Conversion and Management 115, pp. 308-326 (2016) [Google Scholar]
  14. Ahmad I., Khan M.I., Khan H., Ishaq M., Tariq R., Gul K. et al, Pyrolysis study of polyethylene and polypropylene into premium oil products, International Journal of Green Energy 12, pp. 663-671 (2015) [Google Scholar]
  15. Sarcher M., Khabir A., et al, Waste polyethylene terephthalate (PETE-1) conversion into liquid fuel, Journal of Fundamentals of Renewable Energy and Applications 1, (2011) [Google Scholar]
  16. Williams P.T., Williams E.A., Interaction of plastic in solid in mixed plastics pyrolysis, Energy Fuels 13, pp. 188-196 (1999) [Google Scholar]
  17. Kumar S., Singh R.K., Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis, Brazilian Journal of Chemical Engineering 28, pp. 659–667 (2011) [Google Scholar]
  18. Onwudili J.A., Insura N., Williams P.T., Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time, Journal of Analytical and Applied Pyrolysis 86, pp. 293-303 (2009) [Google Scholar]
  19. Kan T., Strezov V, Evans T. Fuel production from pyrolysis of natural and synthetic rubbers, Fuel 191, pp. 403-410 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.