Issue |
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
|
|
---|---|---|
Article Number | 03061 | |
Number of page(s) | 8 | |
Section | Chemical Performance Research and Chemical Industry Technology Research and Development | |
DOI | https://doi.org/10.1051/e3sconf/202124503061 | |
Published online | 24 March 2021 |
Effects of Moisture on Mechanical and Piezoresistive Properties of Cement Composites containing Carbon Fiber during long age
1. Department of civil engineering, Shantou University, Shantou, 515063
2. Department of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou, 450007
*a Corresponding author:6706@zut.edu.cn;
b xhzhao2019@163.com;
c Zhaoyi091218@163.com;
d byd@zut.edu.cn;
This paper presents a compressive test program designed to determine the mechanical and self-sensing properties of cement-matrix composites containing carbon fiber. Two kinds of mixes with 0.5% and 0.75% carbon fiber (CF) were prepared. The mechanical and piezoresistive properties of the cement-matrix composites were evaluated at 28, 90, 180, 270, and 360 d. The results show that the mechanical properties were enhanced in most cases. However, the compressive strength of carbon fiber reinforced cement-matrix composites decreased compared with the reference mix at the early curing ages, which agrees with the results mentioned in the literature. What is worth to mention, the 360 d compressive strength of carbon fiber reinforced cement-matrix composites reached the same level as that of the reference. Moreover, both negative and positive piezoresistivity were observed during the experiments. The amplitude of piezoresistivity was found to change with the variation of moisture content, and was not directly proportional to the magnitude of the stress. In the elastic stage with smaller stress amplitude, the piezoresistivity amplitude was larger. When the stress amplitude was multiplied, the piezoresistivity change was not synchronous. The gauge factor for the composite with 0.75% CF was higher than that of the composite with 0.5% CF and commercially available strain gauges.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.