Issue |
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
|
|
---|---|---|
Article Number | 02072 | |
Number of page(s) | 4 | |
Section | Research and Development of Electrical Equipment and Energy Nuclear Power Devices | |
DOI | https://doi.org/10.1051/e3sconf/202125202072 | |
Published online | 23 April 2021 |
Research on Properties of X-Ray Detection Film Based on Thallium Doped Cesium Iodide
1 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China
2 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China
3 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China
a email:1261642098@qq.com
b email: 283419090@qq.com
* corresponding author:
c email: shuangliu@uestc.edu.cn
As X-ray detection imaging has a wide range of applications in medicine, industry, public safety, etc., it is of great significance to study its imaging mechanism and improve its imaging performance. Based on the process of X-ray luminescence in the scintillator material, this paper established a simulation model using a microcrystalline column structure to investigate the relationship between the thickness of the detection film and the light conversion efficiency. With the help of the simulation tool MATLAB, the Monte Carlo method was used to simulate the light conversion process of X-ray in the film, and the results were obtained as follows. Under the condition of other parameters unchanged, the luminous efficiency reached the peak value with the increase of the film thickness, and then gradually decreased with the increase of film thickness. The reason why the conversion efficiency in the early stage increases with the increase of the film thickness is that the film is in a saturated state, and increasing the thickness can cause more X-ray particles to be converted. As the film thickness increases, more fluorescent photons are absorbed as they propagate in the film, resulting in a gradual decrease in conversion efficiency. Therefore, an appropriate film thickness can be selected based on the simulation results to obtain the ideal light conversion efficiency.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.