Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 9 | |
Section | Building Constructions, Buildings and Structures | |
DOI | https://doi.org/10.1051/e3sconf/202127403026 | |
Published online | 18 June 2021 |
Thermomechanical deformation of the orthotropic shell taking into account the deformation anisotropy
Tula State University, 300012 Tula, Russia
* Corresponding author: taa58@yandex.ru
A variant of the rotation shell in the particular form of a closed circular cylindrical shell, which is often used in the design practice of civil, power and other industrial structures, is considered. The specificity of the considered shell lies in the features of its material, which has a manifestation of dual anisotropy. In particular, this material is orthotropic in structure, and the nature of deformation shows the dependence of stiffness and strength on the type of stress state. The loading of the shell is assumed to be axisymmetric, taking into account the influence of a medium with variable thermal parameters. The temperature difference between the shell surfaces is taken into account here. The statement of the general thermomechanical problem is carried out in an unrelated form, taking into account a certain independence of the problems of thermodynamics and mechanics. Taking into account the limitations of the classical thermomechanical theories of shells made of materials with dual anisotropy and the fact that the known models for such materials have significant drawbacks, the authors used a variant of the normalized stress space. Differential equations of thermoelasticity for a cylindrical shell are obtained, taking into account the complicated thermomechanical properties of its material. Particular solutions with the features of the results of calculating the shell states are illustrated, and their analysis is carried out.
Key words: Orthotropic structure / induced anisotropy / thermomechanics / unbound thermoelasticity problem / cylindrical shell
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.