Issue |
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 6 | |
Section | Process Systems Engineering & Optimization | |
DOI | https://doi.org/10.1051/e3sconf/202128703003 | |
Published online | 06 July 2021 |
Crude Oil Fouling in Heat Exchangers: A Study on Effects of Influencing Forces
Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak D.R., Malaysia
One of the major concerns in petroleum refinery preheat trains is identified as fouling. Fouling impacts the refinery economics and environment heavily. Various approaches to mitigate fouling have not yielded the desired results. This is due to lack of understanding on the effect of influencing forces on crude oil fouling in heat exchangers. Therefore, this study attempts to investigate the effects of various forces such as gravity, Saffman Lift, drag and thermophoretic on crude oil fouling in heat exchangers through Computational Fluid Dynamics (CFD) simulations. From the simulations, it is observed that the higher particle size and particle concentration resulted in higher deposition of particles. Deposition velocities increase for larger sized particles and decrease for small and medium sized particles. The Increased flow velocities and surface roughness increases wall shear and mitigate fouling. Lower temperature gradients at the heat exchanger surface decreases deposition rates due to high thermophoretic forces. The mass deposition rate is reduced by 10.3 and 16.9% with 0.03 and 0.05 Pa, respectively, for 0.14 m/s flow velocity. Also, the mass deposition rate is reduced by 15.6 and 25.1% with 0.03 and 0.05 Pa, respectively, for 0.47 m/s flow velocity. With increased surface roughness from 0.03 to 0.05 mm, the mass deposition rate is reduced by 11.48 and 19.18%, respectively, for 0.14 m/s flow velocity. Also, for 0.47 m/s flow velocity, the mass deposition rate is reduced by 18.84 and 32.92% for 0.03- and 0.05-mm surface roughness, respectively.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.