Issue |
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 7 | |
Section | Geological and Hydrological Structure and Environmental Planning | |
DOI | https://doi.org/10.1051/e3sconf/202129002014 | |
Published online | 14 July 2021 |
Hydrochemical Characteristics and Evolution Laws of Shallow Groundwater in Shuangliao City
Shenyang Center of Geological Survey, China Geological Survey, Shenyang, Liao Ning, China
Author: Li Xuguang, male, born in 1982, master, senior engineer, mainly engaged in research of groundwater pollution, endemic diseases, urban geology, etc. Email: john2011@163.com.
* Corresponding author: Zhao Yan, male, born in 1982, master, senior engineer, mainly engaged in research of groundwater pollution, water resources evaluation, etc. Email: 337056992@qq.com.
Shuangliao City is an important part of the Xiliaohe Plain, and one of the most important bases of grain production in the north of China. Therefore, it is important to ascertain the hydrochemical characteristics of groundwater and their causes and evolution laws in the Xiliaohe Plain to provide guidance to agriculture development and ecological improvement. After collection of detailed data and identification of the groundwater flow field, we studied the causes and evolution of the identified hydrochemical types by zone with mathematical statistics, correlation analysis, ion proportional coefficient and other methods. The results show that the concentrations of HCO3-, Cl-, and Na+ are relatively high, and these of Ca2+, Mg2+, SO42-, and NO3- are relatively low. The concentration of TDS increases gradually along the flow direction of groundwater, and TDS is positively correlated to the variation in concentration of Cl-, Na+, Mg2+, and SO42-. Along the flow direction of groundwater, the hydrochemistry of shallow groundwater show the evolution law from HCO3-Ca·Mg to HCO3·Cl-Na·Ca and HCO3·Cl-Na·Mg, and then to Cl·HCO3-Na·Mg. The hydrochemical types are formed mainly due to the mineral dissolution and deposition, and reaction of cation exchange and adsorption in the aquifer, and the hydrogeochemical processes include leaching, evaporation and concentration, and mixing.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.