Issue |
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 6 | |
Section | Surface and Groundwater Quality | |
DOI | https://doi.org/10.1051/e3sconf/202131407003 | |
Published online | 26 October 2021 |
Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature
Department of Chemistry, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University Al Hoceima, Al Hoceima, Morocco.
* Corresponding author: nouhailahadoudi79@gmail.com
Emerging organic micropollutants, such as bisphenol A (BPA), have raised concerns about their negative impact on human health and ecological safety. This review article aims to demonstrate and highlight recent advances in adsorption applications for bisphenol A, a toxic environmental pollutant commonly found in wastewater. There are many reasons to use non-toxic materials and eco-friendly technologies to remove this pollutant from sewage. [1] Several adsorbents previously used have shown significant efficiency and performance for the removal of BPAs, and current research is directed towards the development of low-cost treatment processes using materials such as clays and Chitosan. The properties of the adsorbent can be adjusted by changing their surface for an optimized performance. In addition, the efficiency of the adsorption process depends on various parameters such as solution pH, the pollutant concentration, contact time, temperature, nature and dose of the adsorbent, which are also discussed. In addition, we critically review the isothermal, kinetic and thermodynamic approaches. [2]
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.