Issue |
E3S Web Conf.
Volume 318, 2021
Second International Conference on Geotechnical Engineering – Iraq (ICGE 2021)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 10 | |
Section | Developments in Structural Engineering and Construction Materials | |
DOI | https://doi.org/10.1051/e3sconf/202131803005 | |
Published online | 08 November 2021 |
Flexural Behavior of Reinforced Concrete Beams Covered by Gypsum Layers and Exposed to Elevated Temperatures
Civil Engineering Department, University of Baghdad, Baghdad, Iraq
a* satarraad@yahoo.com
b Dr.AbdulMuttalib.I.Said@coeng.uobaghdad.edu.iq
The paper presents results of exposure of normal concrete to elevated temperatures (400 and 700) °C covered by layers (gypsum and plaster) with different thicknesses (10 and 20) mm. The casted specimens for each type of test were divided into three groups. The first was without covering the concrete surface with gypsum, while the second and third groups were covered with gypsum of the outer surface with a thickness of 10 and 20 mm, respectively. The experimental results found that the ultimate load capacity and the first crack load of RC beams were improved by using gypsum layers through 400°C. At thickness 10 and 20 mm, the (Pcr and Pu) loss was about (8 and 6) % and (1 and 7) % respectively, compared to the concrete not covered with gypsum, the loss rate is about (25 and 13) %, and this is clear evidence of the benefit of gypsum in reducing the Elevated Temperatures directly to concrete. As for the temperature of 700, the reduction in (Pcr and Pu) was about (57 and 22) % and (31 and 16) % and (10 and 15) % at 0, 10, 20 mm gypsum thickness, respectively. Through the figures shown in the paper, which were obtained from the experimental side of the research, the load-deflection curves improved when the gypsum thickness increased during the specimens' exposure to fire. Where the relationship between them at a temperature of 400°C in a thickness of 20 mm was better than 10 mm when exposed to fire, so by increasing the thickness of the gypsum, the occurrence of deflection is less because it protects the surface of the concrete from direct exposure to heat and thus prevents the occurrence of cracks in the outer surface of the concrete.
Key words: Beams / temperature / gypsum / plaster / fire flame / load-deflection
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.