Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 05014 | |
Number of page(s) | 4 | |
Section | Indoor Air Quality and Airborne Contaminants | |
DOI | https://doi.org/10.1051/e3sconf/202235605014 | |
Published online | 31 August 2022 |
Airborne infection probability in relation of room air distribution: an experimental investigation
1 Silesian University of Technology, Department of Heating, Ventilation and Dust Removal Technology, Gliwice, Poland
2 Technical University of Denmark, International Centre for Indoor Environment and Energy, Kgs. Lyngby, Denmark
3 Silesian University of Technology, Department of Digital Systems, Gliwice, Poland
* Corresponding author: aleksandra.lipczynska@polsl.pl
The objective of this study was to investigate the importance of room air distribution in airborne cross-infection. Tracer gas measurements were performed in a field lab arranged as an office with two breathing thermal manikins. The room was ventilated with a mixing air distribution operating at a constant supply airflow rate of 60 L/s (4 ACH) under different air discharge scenarios: 2-way, 3-way and 4-way. Room air temperature was kept at 22.0±0.2°C. Respiratory-generated airborne pathogens were simulated by N2O dosed into the exhaled air of the manikin acting like an infected person. The N2O concentration was measured in the inhaled air of the second manikin (simulating susceptible person), exhaust and occupied zone. Measured values were used to calculate infection probability by modified Wells-Riley method. The infection probability in the occupied zone depended on the air discharge scenario. The highest infection probability of 2.9-3.9% was obtained in the inhaled air of the exposed manikin in all experimental cases. The results reveal that room air distribution is of major importance for airborne cross-infection. Therefore, during ventilation design and operation, air distribution should be carefully considered in practice. Infection probability calculated using original Wells-Riley method was underestimated compared to values obtained through measurements.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.