Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 18003 | |
Number of page(s) | 6 | |
Section | Multi Phase Media and Multi Physical Coupling - Part I | |
DOI | https://doi.org/10.1051/e3sconf/202338218003 | |
Published online | 24 April 2023 |
On the resistance of hydrophobic soil polymer coatings created by cold plasma polymerization
Institute of Geotechnical Engineering and Construction Management, Hamburg University of Technology, 21079 Germany
* Corresponding author: clara.toffoli@tuhh.de
Hydrophobic soils have natural or artificial origin. In this context, some techniques exist to turn into hydrophobic sand that was originally hydrophilic, as most soils in fact are. Its classical application is impermeabilizing structures where water percolation is not desired. In this paper, a new technique to achieve hydrophobicity is described. It consists of coating particles via cold plasma. The process is known to the industry, but its application in geotechnics is not yet described in literature. The monomers used were octafluorcyclobutane (C4F8) and 1H,1H,2H,2H-perfluoroctylacrilate (PFA-C6). For each monomer, the material was in the coating chamber during two different time spans and a sample was pretreated with oxygen. Different mechanical, thermal and hydraulic conditions were imposed to the samples in order to evaluate the resistance of the coating and its properties. The hydrophobicity was evaluated by means of Water Drop Penetration Time. Results indicate that longer time spans in the cold plasma chamber lead to a more hydrophobic material and that oxygen pretreatment on the sample is irrelevant. It was also observed that mechanical, hydraulic and thermal procedures influence the coating. These observations lead to optimization of the production process and to the understanding of how the material can be applied in the construction industry and what mechanical/hydraulic loads it can be subjected to.
Note to the reader: The name of the first author has been corrected from Magalheãs to Magalhães on November 3, 2023.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.