Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 11004 | |
Number of page(s) | 6 | |
Section | Effects of Microstructure | |
DOI | https://doi.org/10.1051/e3sconf/202338211004 | |
Published online | 24 April 2023 |
Pore scale investigation of unsaturated granular soil behaviour by means of in situ CT experiments
Hamburg University of Technology, Institute of Geotechnical Engineering and Construction Management, 21079 Hamburg, Germany
* Corresponding author: marius.milatz@tuhh.de
With continuing evolution of imaging techniques from medical applications and materials science, non-destructive imaging experiments have also become an important method to investigate soil specimens. Amongst other methods, computed tomography (CT) has developed to a tool to visualise and better understand the microstructure of different soils based on 3D image data. Furthermore, the acquisition of a temporal series of CT images allows to study processes in soils on the microscale, e. g., during mechanical loading. In order to study the hydraulic and mechanical behaviour of unsaturated granular soils, we combine different custom-built miniaturised experimental set-ups with geomechanics background with computed tomography, yielding so-called in situ CT experiments. By means of image reconstruction and further image analysis based on segmented CT images acquired during different hydraulic and mechanical experiments, we study the drainage and imbibition process as well as the shear process of unsaturated sand and glass bead specimens on the pore or grain scale. The analysis of data on the microscopic level, including the phase distribution, interfacial areas, contact lines as well as radii of curvature of capillary menisci, allows to obtain insights into the macroscopic water retention behaviour and shear behaviour of granular soils.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.