Issue |
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
|
|
---|---|---|
Article Number | 03027 | |
Number of page(s) | 6 | |
Section | Thermochemical Engineering and Waste Treatment | |
DOI | https://doi.org/10.1051/e3sconf/202338503027 | |
Published online | 04 May 2023 |
In-situ heavy oil upgrading by high temperature oxidation through air injection
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
2 Southern Sichuan Gas Mine of PetroChina Southwest Oil and Gas Field Company, Chengdu, Sichuan 642300, China
Air injection has been widely considered as a technology to enhanced heavy oil recovery on account of the heavy oil upgrading caused by high temperature oxidation during this process. This paper aims at exploring the effects of oxidation thermal processing in a porous media at high temperature from 500 to 540℃ which is the high temperature oxidation range of heavy oil known from TG results, and reaction time from 8 to 16 hours for heavy oil upgrading. It was suggested that the viscosity decreased with the temperature and retention time increased due to getting less ring structure seen from IR Spectrum results. It was observed that the viscosity of heavy oil was reduced 1 to 2 orders of magnitude. Besides, the kinetics of heavy oil upgrading were analysed using five pseudo components including HO (C35+), MO (C15 ~ C35), LO (C5 ~ C14), coke, G (gas products) and successfully predicted the products results with an error of 4.34%, and great correlation to Arrhenius equation. The activation energies obtained are in the range of 44 ~ 215 kJ/mol. This work has great value in revealing the mechanisms of high temperature oxidation heavy oil upgrading and assisting heavy oil production.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.