Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 8 | |
Section | Energy Efficient and Healthy HVAC systems | |
DOI | https://doi.org/10.1051/e3sconf/202339603007 | |
Published online | 16 June 2023 |
Exploration of HVAC system sizing based on building performance simulation and Monte Carlo method
1 Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
2 Department of Architecture, National Cheng Kung University, Tainan, Taiwan
* Corresponding author: vivian199038@gmail.com
This study uses the Monte Carlo method and building performance simulations to develop an additive model for rapid peak load forecasting at design phase that considers the effects of design parameters. The Monte Carlo method generates numerous of simulation cases and EnergyPlus software is used for the calculations. Specifically, a total of 20 parameters were considered for analysing the peak load calculations, including design day conditions, envelope performance, infiltration, etc. An office building was selected as the reference building. With the screening experiments and the standard regression coefficient, it was identified that there are 15 important parameters for peak cooling load in the perimeter zones and 7 in the core zone. Main effects and interactions for selected parameters were determined by factorial experiments of 40,000 runs for the perimeter zone and 1,287 runs for the core zone. Main effects and interactions were used to develop an additive model between design parameters and peak cooling loads. Finally, model validation by additional 1,000 cases shows a coefficient of determination of 0.995, with a mean bias error of 3.2%, and a coefficient of variation of 3.7%, which indicated that the developed additive model had high accuracy.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.