Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 04004 | |
Number of page(s) | 5 | |
Section | Nearly Zero Energy Buildings and Smart Energy community (Micro to Macro-scale) | |
DOI | https://doi.org/10.1051/e3sconf/202339604004 | |
Published online | 16 June 2023 |
Influence of External Surface Radiation Properties on Thermal Performance of Walls——Take a typical office building in Chengdu as an example
1 School of Architecture and Urban Planning Chongqing University, 400044 Chongqing, China
2 China Southwest Architectural Design and Research Institute Corp. Ltd, 610059 Chengdu, China
* Corresponding author: fc10@xnjz.com
In this paper, taking a typical office building in Chengdu as an example, the coupling relationship between the radiation properties (short-wave absorption coefficient and long-wave emission coefficient) of the external surface materials of the wall and the insulation types and the insulation performance is studied by using software simulation method. The results show that the internal insulation wall is beneficial to reduce the heating load while the external insulation wall is beneficial to reduce the cooling load. And the external surface material's radiative properties hardly affect the wall insulation type choice. Still, in the case of Chengdu office buildings, interior insulated walls are more conducive to year-round building energy efficiency. In summer, the radiation characteristics of the outer surface material will affect the choice of the best heat transfer coefficient (U-value) of the wall. When the short-wave radiation absorption coefficient is small, the wall with good insulation performance will appear anti-energy-saving phenomenon. Therefore, it is recommended that the regions with high cooling loads fully consider the influence of the external surface material's radiation properties on the wall's thermal performance in the design of the thermal performance of the wall.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.