Issue |
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 6 | |
Section | Mathematical Modeling, IT, Industrial IoT, AI, and ML | |
DOI | https://doi.org/10.1051/e3sconf/202340203026 | |
Published online | 19 July 2023 |
Online monitoring of the technical condition of energy saturated agricultural equipment using neural networks
Federal Scientific Agro-Engineering Center VIM, 109428 Moscow, Russia
* Corresponding author: ykataev@mail.ru
The article presents a technique for continuous monitoring of the technical condition of energy-saturated agricultural machinery (SHT) using digital technologies, aimed at introducing new intelligent methods for diagnosing machines in the agro-industrial complex. It is noted that the main task of the digital monitoring system is to analyze the effective operation of equipment. The proposed neural network can continuously receive data on the technical condition of agricultural machinery in real time, analyzes and structures input values, such as engine speed, hourly fuel consumption, coolant temperature, which depend on the load and operating modes of the machine engine. The advantage of the digital method of monitoring the parameters of the technical condition is its assessment in the process of diagnosing in real time. The method allows to determine not only the cause of engine failure, but also to evaluate the efficiency of complex energy-saturated agricultural machinery in general. The developed architecture of the neural network is capable of analyzing and transmitting data obtained during the diagnostic process to a special server for storing information. The proposed method for continuous monitoring of the technical condition of complex energy-saturated equipment according to controlled parameters, based on the use of neural networks, can be quickly adapted to different brands of equipment when diagnosing.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.