Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 4 | |
Section | Processes and Mechanics | |
DOI | https://doi.org/10.1051/e3sconf/202341501032 | |
Published online | 18 August 2023 |
Impact force of post-fire debris flows over erodible beds
Department of Civil and Environmental Engineering of The Hong Kong University of Science and Technology, Hong Kong SAR, China
* Corresponding author: mzhengaj@connect.ust.hk
After wildfire events, water repellent soil is often found in the subsurface layer of channel bed in the burnt area. Debris flows generated from burnt basins and ensuing entrainment of the channel bed pose imminent threat to infrastructure and human lives. However, the fundamental interaction mechanisms of debris flow overriding water repellent bed and resulting impact force on debris-resisting barriers have yet to be elucidated. In this study, physical flume experiments are conducted to simulate post-fire debris flows overriding and entraining a sand bed with varied wettability. Compared to a wettable bed, water repellent sediment exhibits a tremendous increase in the erosion depth and subsequent impact force on the barrier. The test results demonstrate that debris flows overriding water repellent sediment can be particularly hazardous and the effects of water repellency need to be captured by the design criteria of debris resisting barriers in burnt basins.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.