Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 06013 | |
Number of page(s) | 3 | |
Section | Engineering and Mitigation | |
DOI | https://doi.org/10.1051/e3sconf/202341506013 | |
Published online | 18 August 2023 |
Multiple debris-resisting barriers with basal clearance: A study on impact force
1 Department of Civil and Environmental Engineering of The Hong Kong University of Science and Technology, Hong Kong SAR, China
2 Department of Civil Engineering of The University of Hong Kong, Hong Kong SAR, China
* Corresponding author: hliubc@connect.ust.hk
Optimising debris-resisting barriers is of paramount importance on constructing cost-effective and eco-friendly mitigation works. Multiple barriers with basal clearance can potentially serve as an optimal approach because they can facilitate flow energy dissipation, reduce the impact force on each barrier, ease the maintenance and resist a large flow volume. However, the design impact force of multiple barriers with basal clearance remains empirical. In this study, physical model tests were carried out to investigate the impact force of idealised dry granular flow against dual rigid barriers with basal clearance using a 5-m-long flume model. Measured impact forces show that basal clearance attenuates the impact force exerted on the second barrier by apportioning the impact forces from basal discharge and overflow. Basal discharge dissipates the kinetic energy of landing flow and reduces the impact force of overflow. A rational design of basal clearance serves as an efficient measure for optimising the design of multiple barriers.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.