Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 10005 | |
Number of page(s) | 7 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Cyclic and Dynamic Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/202454410005 | |
Published online | 02 July 2024 |
Effects of cyclic loading on soil-geogrid interaction characteristics
CONSTRUCT, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
* Corresponding author: fbf@fe.up.pt
The benefits of geosynthetic-reinforced soil systems over conventional earth-retaining structures are now well established. These reinforced systems are often subjected not only to static loads, but also to seismic and/or traffic loads, in which case the effects of repeated loading on soil-geosynthetic interaction characteristics should be properly considered. This study investigates the behaviour of a geogrid typically used for soil reinforcement under cyclic pullout loading through load-controlled laboratory pullout tests. To examine the influence of cyclic loading amplitude, number of cycles and static pullout force acting on the geogrid at the onset of cyclic loading, distinct loading patterns are considered. A well-graded residual soil from granite is used as backfill material. A comparison between the cyclic and monotonic pullout response of the reinforcement is then established in order to identify any potential strength loss attributed to cyclic loading. The experimental results show that the ultimate pullout resistance of the geogrid embedded in medium dense residual soil from granite may be adversely affected by cyclic loading. The cumulative cyclic displacements of the reinforcement are more pronounced during the initial loading cycles, but tend to stabilize with the increasing number of cycles when the soil is densely compacted. In the presence of dense soil, the cyclic strains of the geogrid specimen are particularly significant at the front section and almost negligible towards the back end.
Key words: pullout test / soil-geogrid interaction / cyclic and post-cyclic interface response / residual soil from granite
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.