Issue |
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
|
|
---|---|---|
Article Number | 04025 | |
Number of page(s) | 6 | |
Section | Hazard analysis and modelling | |
DOI | https://doi.org/10.1051/e3sconf/20160704025 | |
Published online | 20 October 2016 |
Innovations in irregular meshing to improve the performance of 2D finite volume flood simulation
XPSolutions, Jacobs Well, Newbury, RG14 1BD, UK
a Corresponding author: sam.jamieson@xpsolutions.com
There are now many successful applications of 2D finite difference flood simulations on rectangular grids. However, finite volume algorithms are now starting to take over as the preferred choice for simulating flood inundation. The use of finite volume algorithms allows the simulation to be based on irregular meshes. Yet many users are not convinced of the benefits of irregular meshing. This is partly because meshing adds a rather unwelcome extra process to the modelling. But it is more likely because the process of generating irregular meshes has been problematic and time consuming. In the rush to develop excellent finite volume flow engines, meshing has been rather left behind. Yet the quality of the flow modelling depends on the quality of the meshing. The authors have been working on innovative mesh generation techniques. The aim has been to come up with a faster, more reliable mesh generation process. But also to improve the resulting mesh in order to speed up the hydraulic simulation and to generate better quality flood inundation results. This paper discusses and illustrates these advances in meshing. Results are presented to show how well the meshing techniques deal with problematic boundaries. The resulting meshes are applied to test cases to show the impact of either grids or different qualities of mesh on flood inundation results for a variety of circumstances.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.