Issue |
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
|
|
---|---|---|
Article Number | 11009 | |
Number of page(s) | 5 | |
Section | Risk evaluation and assessment | |
DOI | https://doi.org/10.1051/e3sconf/20160711009 | |
Published online | 20 October 2016 |
Large-scale and High-resolution Flood Risk Model for Japan
Risk Management Solutions, Inc., Peninsular House, 30 Monument Street, London EC3R 8NB, UK
a Corresponding author: anongnart.assteerawatt@rms.com
Japan has experienced several catastrophic flood events causing extensive damage to property and the national economy due to its topography, geography, and climate. Steep and short rivers, frequent typhoons and torrential rains, extremely high concentration of people and assets in flood-prone areas, and intensive human intervention subject the country to frequent flood disasters. Risk Management Solutions (RMS) has developed a stochastic inland flood model as part of its Japan Typhoon Model to assess flood risk due to typhoon for the (re)insurance industry. The RMS flood risk model consists of i) a precipitation-driven flood hazard module, ii) a building-level exposure module, iii) a component-based vulnerability module and iv) a financial module. The flood model is driven by 105,000 years of continuously simulated precipitation accounting for typhoon and non-typhoon precipitation. Rainfall-runoff and routing models, fluvial- and pluvial-inundation models, and probabilistic defence failures are included in the flood hazard module to obtain a realistic view of flood risk. By combining a large, country-level stochastic dataset with a high-resolution grid (~40m) for flood inundation modeling, and building level exposure data and hundreds of unique component-based vulnerability types, a comprehensive view of flood risk is provided on both local and aggregate levels, The financial module accounts for insured risk from different financial contracts.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.