Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 7 | |
Section | Invited Lectures | |
DOI | https://doi.org/10.1051/e3sconf/20160904006 | |
Published online | 12 September 2016 |
SEALEX in-situ experiments-performance tests of repository seals: experimental observations and modelling
Institute for Radiation Protection and Nuclear safety (IRSN), France
a Corresponding author: nadia.mokni@irsn.fr
The paper describes observations and numerical analysis of SEALEX performance tests installed in Tournemire Underground Research Laboratory (URL). One of the objectives of the large scale in-situ tests is to investigate the impact of technological gaps on the long term performance of bentonite based seals. The swelling cores consist of pre-compacted blocks of a natural sodic Wyoming bentonite (MX80 type) mixed with quartz sand in a ratio of 70/30 (in dry mass) with different geometries (monolithic disks or four jointed disks). Several technological gaps exist within the in situ tests: Gaps between the blocks and annular gap with variable width between the bentonite-based core and the host rock. All the tests are extensively instrumented for monitoring the main Hydro-Mechanical (HM) variables. Comparison of the experimental results showed that the presence of technological gaps constituted new hydration sources (annular gaps) and flow paths (gaps between the blocks) that changed the saturation kinetics. A coupled HM formulation that incorporates the relevant processes involved in the problem under consideration has been adopted to analyse the effect of the annular technological gap on dry density homogenization of the bentonite based core as hydration progresses. Technological gaps were demonstrated to have an impact on dry density distribution.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.