Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 10012 | |
Number of page(s) | 6 | |
Section | Advances in Experimental Methods: Hydraulic Properties | |
DOI | https://doi.org/10.1051/e3sconf/20160910012 | |
Published online | 12 September 2016 |
Measurement of soil suction using moist filter paper
Nanyang Technological University, School of Civil and Environmental Engineering, Blk N1, 50 Nanyang Avenue, Singapore 639798
a Corresponding author: cecleong@ntu.edu.sg
Measurement of soil suction is important as soil suction is one of the two stress-state variables that control both the hydro and mechanical behaviour of unsaturated soils. One of the soil suction measurement techniques is the filter paper method. Even though the filter paper technique has been standardized, the experimental procedure can still be improved in order to reduce the inconsistencies that are often reported with the filter paper technique. This paper explores usage of both initially dry and initially moist Whatman No. 42 filter paper for matric and total suction measurements. Residual soils from the Bukit Timah Granite in Singapore were compacted at various water contents from dry to wet of optimum using standard Proctor energies and their suctions were measured using both contact and non-contact filter papers. Results of the suction measurements showed hysteresis between the initially dry and the initially moist filter papers for both the contact and non-contact methods. Suction measurement by the contact filter paper method is more consistent than suction measurement by the non-contact filter paper method. Condensation causes the non-contact filter papers to have higher water contents. The results showed that the non-contact initially dry filter paper follows the total suction curve but the non-contact initially moist filter paper may follow the matric suction curve instead.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.