Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 6 | |
Section | Mechanical Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/20160914002 | |
Published online | 12 September 2016 |
Influence of saturation degree and role of suction in unsaturated soils behaviour: application to liquefaction
Institut Pascal, Polytech Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand, France
a Corresponding author: Mathilde.vernay@univ-bpclermont.fr
The effect of the pore fluid compressibility on liquefaction has been studied by various authors. But few papers have been published about the role of suction in cyclic behavior of unsaturated soils. Most of these works use Skempton coefficient B as a reference in terms of saturation degree to analyze their results. The use of B in experimental conditions is convenient, but is not accurate when studying liquefaction behavior, since effects of suction are neglected. In this paper, the influence of saturation degree on mechanical behavior of a soil under dynamic loads is studied. Cyclic undrained triaxial tests were performed on sand samples, under various levels of saturation. Soil-water characteristic curve was used, in order to study influence of suction. The first results confirm that when the degree of saturation decreases, the resistance increases. Initial positive suction tends to stiffen the soil. It also appears that the presence of air delays the occurrence of liquefaction, but doesn’t prevent it. Indeed, liquefaction is observed, whether the soil is saturated or not.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.