Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 14006 | |
Number of page(s) | 6 | |
Section | Mechanical Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/20160914006 | |
Published online | 12 September 2016 |
Unconfined strength of an unsaturated residual soil struck lightning
1 PUC-Rio, Civil Engineering Department, 22451-900 Rio de Janeiro, Brazil
2 UERJ, Physics’ Department, 20550-900 Rio de Janeiro, Brazil
3 CEPEL, LabDig, 21941-911 Rio de Janeiro, Brazil
a Thiago de S. Carnavale: thicarnavale@gmail.com
It is well known that different triggering factors are related to landslides occurrence. However, in many cases, it is not possible to identify main factors that may contribute to start a landslide. Following that, lightning phenomena is herein considered as a possible factor that may promote changes in the structure, and eventually, in the strength of soils. The current study aims to analyse the influence of laboratory simulated lightning in the structure of undisturbed granite-gneiss residual soil samples. The main focus is to compare the peak strength of unsaturated samples that were not struck by replicated lightning with the peak strength of soil samples struck by replicated lightning. The methods used are: Soil sampling and physical characterization; unconfined compression strength tests on unsaturated undisturbed samples; submission of soil samples to replicated lightning; unconfined compression strength tests on samples struck by replicated lightning and micro tomography of samples submitted to lightning. As results, it is seem that lightning may cause a hole with irregular geometry inside the soil. Analysing the tests of the samples struck by laboratory simulated lightning, a peak strength reduction with the charge incidence was observed. Comparing the variation of soil matric suction on the peak strength of the soil that was not struck by replicated lightning with that of the soil struck by the higher charge of the replicated lightning, it is observed that the samples struck by high-voltage presents lower values of peak strength.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.