Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 14022 | |
Number of page(s) | 6 | |
Section | Mechanical Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/20160914022 | |
Published online | 12 September 2016 |
Predicting the volumetric variation due to changes in suction, applied stress and swelling pressure
1 DIPFI, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Querétaro, México
2 División de Ingenierías, CUCEI, Universidad de Guadalajara, 44430, Guadalajara, Jalisco, México
a Corresponding author: galaviz.gonzalez.r@gmail.com
The settlements produced by the load transmitted to the structure on expansive soils, and those calculated by the classical theories of soil mechanics, are different because the swelling pressure acts inversely to the applied stress. In this paper we describe a procedure to determine a volumetric variation coefficient by hydration (αh) which considers the expansive soil behaviour. In order to do this, it is necessary to know the soil’s initial water content, the swelling pressure, and the applied stress. Soil suction and swelling pressure were measured with filter paper technique and a mechanical oedometer, respectively. Unsaturated undisturbed samples of expansive soil were used. The water content was varied, starting from 0%, with increments of 5.5% to reach 38%. Furthermore, we present a set of curves that show the magnitude of the coefficient (αh) associated to a water content, and the relationship between applied stress and swelling pressure. The results show that the variation of the coefficient under different initial water contents ranges between 0% to 22%. This is because water is strongly attracted by clay minerals, but this attraction decreases as water layers are father from the surface of clay minerals, thus decreasing its swelling potential.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.