Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 15010 | |
Number of page(s) | 6 | |
Section | Slopes Stability | |
DOI | https://doi.org/10.1051/e3sconf/20160915010 | |
Published online | 12 September 2016 |
Numerical analysis of the stability of inhomogeneous slopes considering partially saturated conditions
Graz University of Technology, Institute of Soil Mechanics and Foundation Engineering, Computational Geotechnics Group, 8010 Graz, Austria
a Corresponding author: patrick.pichler@tugraz.at
It is well accepted that rainfall could play a significant role in instability of slopes. The main objective of the presented study is to quantify the influence of varying characteristics of water flow, its associated changes of pore-water pressures and shear strength on the stability of simplified, but inhomogeneous, slope geometries. The commonly used van Genuchten model was used to describe the Soil Water Characteristic Curve (SWCC) mathematically. In the context of this study, the influence of different hydraulic behaviour of soil layers, i.e. different SWCC, on the factor of safety (FoS) is evaluated by means of fully coupled flow-deformation analyses employing the finite element method. To quantify the slopes’ factor of safety during rainfall events after specified times of infiltration or evaporation, the strength reduction method was applied. In addition to various combinations of soil layers, the influence of a water bearing high permeable soil layer between two less permeable soil layers, a situation which is often encountered in practice, on the factor of safety has been investigated.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.