Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 17002 | |
Number of page(s) | 6 | |
Section | Constitutive Modelling | |
DOI | https://doi.org/10.1051/e3sconf/20160917002 | |
Published online | 12 September 2016 |
Development of a coupled thermo-hydro-mechanical double structure model for expansive soils
Faculty of Science, Charles University in Prague, Czech Republic
a Corresponding author: masin@natur.cuni.cz
In this paper, development of a thermo-hydro-mechanical model for expansive soils including double structure is described. The model is based on hypoplastic model by Mašín [6], in which the hydro-mechanical coupling is considered at each of the two structural levels. The model also includes separate effective stress definitions and water retention curves for the two levels of structure. In the proposed model, an approach by Mašín and Khalili [8] to include thermal effects into hypoplastic models is followed. This is combined with temperature-dependent water retention curve of macrostructure, temperature-induced deformation of microstructure and an enhanced double-structure coupling law. Good predictions of the model are demonstrated by comparing the model simulations with experimental data on MX80 bentonites taken over from literature.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.