Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 19002 | |
Number of page(s) | 6 | |
Section | Dams and Dykes | |
DOI | https://doi.org/10.1051/e3sconf/20160919002 | |
Published online | 12 September 2016 |
On the role of partially saturated soil strength in the stability analysis of a river embankment under steady-state and transient seepage conditions
Department of Civil, Chemical, Environmental and Materials Engineering, DICAM, University of Bologna, Italy
a Corresponding author: carmine.gragnano2@unibo.it
River flood risk is considered being one of the most costly hazards in Europe and under a further major potential impact of climate change, in combination with land-use changes and water management practices, flood risk is expected to increase for many river basins. In engineering practice, the design of river embankments is usually performed using simplified approaches, considering steady-state flow conditions induced by the retained water and almost neglecting issues related to partially saturated soils, thus leading to potentially heavily over conservative results of stability analyses. To provide a realistic assessment of river bank stability conditions and to get a more accurate prediction of flood risk it is necessary to consider river bank soil behaviour at different saturation degrees in connection with transient seepage flow. A numerical study on stability conditions of a specific river embankment focusing on the partially saturated soil strength contribution is presented herein. Seepage and stability analyses have been carried out using the information collected on river Secchia flooding case study, occurred north of the city of Modena (Italy) in January 2014. Limit equilibrium method has been adopted for assessing the overall stability in steady-state and transient flow conditions. Useful indications for accounting unsaturated soil strength in similar circumstances are finally provided in the paper.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.