Issue |
E3S Web Conf.
Volume 10, 2016
1st International Conference on the Sustainable Energy and Environment Development (SEED 2016)
|
|
---|---|---|
Article Number | 00006 | |
Number of page(s) | 3 | |
DOI | https://doi.org/10.1051/e3sconf/20161000006 | |
Published online | 17 October 2016 |
Cost–effective Polythiophene Counter Electrodes for Dye Sensitized Solar Cells
1 Karamanoglu Mehmetbey University, Faculty of Engineering, Department of Energy Systems, Karaman, Turkey
2 Karamanoglu Mehmetbey University, Faculty of Engineering, Department of Metallurgical and Materials, Karaman, Turkey
a Corresponding author: mervecelik@kmu.edu.tr
Dye sensitized solar cells (DSSCs) are most promising devices among third–generation solar cells because of low cost, easy production, environmental friendliness, and relatively high conversion efficiency. Counter electrode (CE), which is an important component in DSSCs, functions as an electron transfer agent as well as the regenerator of redox couple. Hitherto, various methods and materials were used to prepare different counter electrodes.Among these materials, conducting polymers have been widely investigated and employed in various applications such as sensors, supercapacitors, energy storage devices, DSSCs and others. In this study, Polythiophene (PTh) conducting polymer was successfully synthesized by electrochemical deposition method, and employed as an alternative to expensive platinum (Pt) CE for DSSC. Besides, PTh conducting polymer was electrochemically deposited via cyclic voltammetry method on FTO substrates. The morphology of the PTh film was characterized by SEM and AFM. Finally, the photovoltaic performance of PTh CE based DSSC was compared with PEDOT CE based device. This new concept—along with promising electrocatalytic activity and facile electron transfer—provides a new approach to enhance the photovoltaic performances of Pt–free DSSCs.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.