Issue |
E3S Web Conf.
Volume 10, 2016
1st International Conference on the Sustainable Energy and Environment Development (SEED 2016)
|
|
---|---|---|
Article Number | 00105 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/20161000105 | |
Published online | 17 October 2016 |
High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis
1 AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Fundamental Research in Energy Engineering, Krakow, Poland
2 AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Nuclear Energy, Krakow, Poland
a Corresponding author: michald@agh.edu.pl
High temperature gas-cooled nuclear reactor (called HTR or HTGR) for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.