Issue |
E3S Web Conf.
Volume 10, 2016
1st International Conference on the Sustainable Energy and Environment Development (SEED 2016)
|
|
---|---|---|
Article Number | 00139 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/20161000139 | |
Published online | 17 October 2016 |
The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand
1 Institute of Thermal Engineering and Air Protection, Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24, 31–155 Cracow, Poland
2 Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31–261 Cracow, Poland
a Corresponding author: piotrolczak@hotmail.com
The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW) in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal). That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC) and evacuated tube collectors with heat pipe (ETCHP); both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY). In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl) was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.