Issue |
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
|
|
---|---|---|
Article Number | 00026 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20171700026 | |
Published online | 24 May 2017 |
Obtaining zeolites from slags and ashes from a waste combustion plant in an autoclave process
1 Cracow University of Technology, Faculty of Environmental Engineering, Institute of Engineering and Water Management, Warszawska 24, 31-151 Cracow, Poland
2 Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Materials Engineering, 37 Jana Pawła II Av., 31-864 Cracow, Poland
3 AGH University of Science and Technology in Krakόw, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, 30 Mickiewicza Av., 30-059 Cracow, Poland
* Corresponding author: agrela@pk.edu.pl
Waste combustion is associated with the generation of post-processing solid products – waste such as slag and ash. One of the promising technologies in waste management and processing is the synthesis of zeolites and other materials exhibiting sorption properties. The aim of this study was to characterise and assess the physicochemical properties of the waste and the products synthesised from it. This paper presents the possibility of synthesis zeolites from the slag and ash from two waste combustion plants. The investigated waste is classified as hazardous waste and denoted by the EWC code 190111*. The paper presents the results of physicochemical studies of these materials. As a result of synthesis in an autoclave at 140°C with the use of 2 M NaOH, and other compounds, such zeolite forms as chabazite and sodalite were obtained. Textural studies and ion-exchange capacity investigations carried out allowed characterisation of the sorption properties of the materials. It was found that the materials obtained are characterised by the BET specific surface areas of 25.45 m2/g and 16.79 m2/g.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.