Issue |
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
|
|
---|---|---|
Article Number | 00039 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20171700039 | |
Published online | 24 May 2017 |
Analysis of the possibility to cover energy demand from renewable sources on the motive power of the heat pump in low-energy building
Institute of Thermal Engineering and Air Protection, Faculty of Environmental Engineering, Cracow University of Technology
* Corresponding author: maciek.knapik@gmail.com
The article presents the problem of the demand for electricity for the heat pump and an analysis of the coverage of this demand by renewable energy sources such as wind turbines and photovoltaic cells, which generate electricity in low energy buildings. Low-energy and passive constructions are a result of introduction of new ideas in building design process. Their main objective is to achieve a significant reduction in demand for renewable primary energy, necessary to cover the needs of these buildings, mostly related to their heating, ventilation and domestic hot water This article presents the results of numerical analysis and calculations performed in MATLAB software, based on typical meteorological years. The results showed that renewable energy sources, can allow to cover a significant demand for electricity, that is required to power the heat pump it is economically justified.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.